

1/2.9 inch HD class Single Chip CMOS Image Sensor with 1312 X 816 Pixel array

PH1100K

6th Floor, Gyeonggi R&DB Center, 906-5 lui-dong, Yeongtong-gu, Suwon-si, Gyeonggi-do, 443-766, Korea Tel : 82-31-888-5300, FAX : 82-31-888-5398

> Copyright © 2010, Pixelplus Co.,Ltd ALL RIGHTS RESERVED

1/2.9 inch HD class Single Chip CMOS Image Sensor With 1312 X 816 Pixel array

Features

- 1312 x 816 effective pixel array with RGB Bayer color filters and micro-lens
- Power supply
 AVDD : 2.8V
 HVDD : 2.8V or 3.3V
- Output formats
 CCIR656, YCbCr422, RGB565, RGB444
 Raw Bayer, ISP Bayer
- Image processing on chip
 Lens shading, Gamma correction, Defect
 correction, Low pass filter, Color interpolation,
 Edge enhancement, Color correction,

Brightness, Contrast, De-color, Auto black level compensation, Auto white balance, Auto exposure control and Back light compensation. Special effects (Reverse, Sketch, Sepia, Embossing, Black & White)

- Frame size, window size and position can be programmed through a 2-wire serial interface bus
- High Image Quality and High low light performance
- \triangleright I2C / SPI master included
- > 4 layer overlay function by using SPI ROM
- ▷ Scan mode : Progressive Scan
- ▷ On-chip phase locked loop (PLL)
- > Horizontal / Vertical mirroring
- Cropping & max 4x Digital Zoom support
- \triangleright 50Hz, 60Hz flicker automatic cancellation
- ▷ Software Reset
- ▷ Off-chip IR-LED control
- ▷ Motion detection support (64-area)
- Chip address selection PAD
- \triangleright Crystal input support
- \triangleright On chip regulator for core
- ▷ CSP/52CLCC/PLCC Package type supports

Effective Pixel Array	1312(H) x 816(V) [WXGA]
Pixel Size	4.2 um x 4.2 um
Effective Image Area	5.51 mm x 3.42 mm (Diagonal 6.48 mm)
Optical Format	1/2.9 inch
Input Clock Frequency	27 MHz
Output Clock Frequency	74.25 MHz (parallel) 148.5MB/s (serial)
Output Interface	 20/16 bits Parallel with SMPTE296M 8/10 bits Parallel interface MIPI Serial interface with 2 lanes (148.5MB/s)
Max. Frame Rate	60 fps @ YUV 60 fps @ Bayer
Power Supply	Analog : 2.8V IO : 2.8V or 3.3V Core : 1.5V (On chip LDO)
MAX CRA	10 Degree
Applications	Car Blackbox, HD-CCTV IP CAM, Rear View, Smart TV Door Phone, etc.
Sensitivity	6.8 [V/Lux.sec]
Power Consumption	595.0 [mW] @ Dynamic
	517.1 [uW] @ Standby
Dynamic Range	57.2 [dB]
SNR	41.1 [dB]

[Table 1] Typical Parameters

1/2.9 inch HD class Single Chip CMOS Image Sensor With 1312 X 816 Pixel array

PIN Descriptions

[Fig. 1] PIN Description

3/3

1/2.9 inch HD class Single Chip CMOS Image Sensor With 1312 X 816 Pixel array

Signal Environment

PH1100K don't have tolerant Input pads. The input signal must be equal to HVDD for stable operation. If the power of input signal is higher than recommended, it may flow leakage current by shot circuit path in the input PADs.

Chip Architecture

PH1100K has 1312 x 816 effective pixel array and column/row driver circuits to read out the pixel data progressively. CDS circuit reduces noise signals generated from various sources mainly resulting from process variations. Pixel output is compared with the reset level of its own and only the difference signal is sampled, thus reducing fixed error signal level. Each of R, G, B pixel output can be multiplied by different gain factors to balance the color of images in various light conditions. The analog signals are converted to digital forms one line at a time and 1 line data are streamed out column by column. The Bayer RGB data are passed through a sequence of image signal processing blocks to finally produce YCbCr 4:2:2 output data. Image signal processing includes such operations as gamma correction, defect correction, low pass filter, color interpolation, edge enhancement, color correction, contrast stretch, color saturation, white balance, exposure control and back light compensation. Internal functions and output signal timing can be programmed simply by modifying the register files through 2-wire serial interface.

[Fig. 2] Block Diagram

4/3